Mercurial > repos > imgteam > superdsm
view run-superdsm.py @ 0:1b0fc671187f draft
planemo upload for repository https://github.com/BMCV/galaxy-image-analysis/tools/superdsm/ commit 4d66ff6e8a2a842e44e8d0d7102dfb3ac78dca7e
author | imgteam |
---|---|
date | Sun, 25 Jun 2023 21:48:40 +0000 |
parents | |
children | 700ae37e5c69 |
line wrap: on
line source
""" Copyright 2023 Leonid Kostrykin, Biomedical Computer Vision Group, Heidelberg University. Distributed under the MIT license. See file LICENSE for detail or copy at https://opensource.org/licenses/MIT """ import argparse import imghdr import os import pathlib import shutil import tempfile import ray import superdsm.automation import superdsm.io import superdsm.render if __name__ == "__main__": parser = argparse.ArgumentParser(description='Segmentation of cell nuclei in 2-D fluorescence microscopy images') parser.add_argument('image', help='Path to the input image') parser.add_argument('cfg', help='Path to the file containing the configuration') parser.add_argument('masks', help='Path to the file containing the segmentation masks') parser.add_argument('overlay', help='Path to the file containing the overlay of the segmentation results') parser.add_argument('seg_border', type=int) parser.add_argument('slots', type=int) args = parser.parse_args() if args.slots >= 2: num_threads_per_process = 2 num_processes = args.slots // num_threads_per_process else: num_threads_per_process = 1 num_processes = 1 os.environ['MKL_NUM_THREADS'] = str(num_threads_per_process) os.environ['OPENBLAS_NUM_THREADS'] = str(num_threads_per_process) os.environ['MKL_DEBUG_CPU_TYPE'] = '5' ray.init(num_cpus=num_processes, log_to_driver=True) with tempfile.TemporaryDirectory() as tmpdirname: tmpdir = pathlib.Path(tmpdirname) img_ext = imghdr.what(args.image) img_filepath = tmpdir / f'input.{img_ext}' shutil.copy(str(args.image), img_filepath) pipeline = superdsm.pipeline.create_default_pipeline() cfg = superdsm.config.Config() img = superdsm.io.imread(img_filepath) data, cfg, _ = superdsm.automation.process_image(pipeline, cfg, img) with open(args.cfg, 'w') as fp: cfg.dump_json(fp) overlay = superdsm.render.render_result_over_image(data, border_width=args.seg_border, normalize_img=False) superdsm.io.imwrite(args.overlay, overlay) masks = superdsm.render.rasterize_labels(data) superdsm.io.imwrite(args.masks, masks)