Mercurial > repos > iuc > semibin_generate_sequence_features
view generate_sequence_features.xml @ 2:ff4e487f4f7e draft default tip
planemo upload for repository https://github.com/galaxyproject/tools-iuc/tree/master/tools/semibin commit 13abac83068b126399ec415141007a48c2efaa84
author | iuc |
---|---|
date | Fri, 10 Nov 2023 20:50:57 +0000 |
parents | 0ae1a2636de5 |
children |
line wrap: on
line source
<tool id="semibin_generate_sequence_features" name="SemiBin: Generate sequence features" version="@TOOL_VERSION@+galaxy@VERSION_SUFFIX@" profile="@PROFILE@"> <description> (kmer and abundance) as training data for semi-supervised deep learning model training </description> <macros> <import>macros.xml</import> </macros> <expand macro="biotools"/> <expand macro="requirements"/> <expand macro="version"/> <command detect_errors="exit_code"><![CDATA[ #import re @BAM_FILES@ @FASTA_FILES@ SemiBin2 #if $mode.select == 'single' or $mode.select == 'co' generate_sequence_features_single #else generate_sequence_features_multi --separator '$separator' #end if --input-fasta 'contigs.fasta' --input-bam *.bam --output 'output' --threads \${GALAXY_SLOTS:-1} @MIN_LEN@ #if str($ml_threshold) != '' --ml-threshold $ml_threshold #end if ]]></command> <inputs> <expand macro="mode_fasta_bam"/> <expand macro="min_len"/> <expand macro="ml-threshold"/> <param name="extra_output" type="select" multiple="true" label="Extra outputs" help="In addition to the training data"> <option value="coverage">Coverage files</option> <option value="contigs">Contigs (if multiple sample)</option> </param> </inputs> <outputs> <expand macro="data_output_single"/> <expand macro="data_output_multi"/> <expand macro="generate_sequence_features_extra_outputs"/> </outputs> <tests> <test expect_num_outputs="4"> <conditional name="mode"> <param name="select" value="single"/> <param name="input_fasta" ftype="fasta" value="input_single.fasta"/> <param name="input_bam" ftype="bam" value="input_single.bam"/> </conditional> <conditional name="min_len"> <param name="method" value="automatic"/> </conditional> <param name="ml_threshold" value="4000"/> <param name="extra_output" value="coverage"/> <output name="single_data" ftype="csv"> <assert_contents> <has_n_lines n="41"/> <has_text text="g1k_0"/> <has_text text="g4k_9"/> </assert_contents> </output> <output name="single_data_split" ftype="csv"> <assert_contents> <has_n_lines n="81"/> <has_text text="g1k_0_1"/> <has_text text="g3k_2_2"/> <has_text text="g4k_7_2"/> </assert_contents> </output> <output name="single_cov" ftype="csv"> <assert_contents> <has_n_lines n="41"/> <has_text text="g1k_0"/> </assert_contents> </output> <output name="single_split_cov" ftype="csv"> <assert_contents> <has_n_lines n="1" delta="1"/> </assert_contents> </output> </test> <test expect_num_outputs="4"> <conditional name="mode"> <param name="select" value="co"/> <param name="input_fasta" ftype="fasta" value="input_single.fasta"/> <param name="input_bam" ftype="bam" value="input_coassembly_sorted1.bam,input_coassembly_sorted2.bam,input_coassembly_sorted3.bam,input_coassembly_sorted4.bam,input_coassembly_sorted5.bam"/> </conditional> <conditional name="min_len"> <param name="method" value="automatic"/> </conditional> <param name="ml_threshold" value="4000"/> <param name="extra_output" value="coverage"/> <output name="single_data" ftype="csv"> <assert_contents> <has_n_lines n="41"/> <has_text text="g1k_0"/> <has_text text="g4k_9"/> </assert_contents> </output> <output name="single_data_split" ftype="csv"> <assert_contents> <has_n_lines n="81"/> <has_text text="g1k_0_1"/> <has_text text="g3k_2_2"/> <has_text text="g4k_7_2"/> </assert_contents> </output> <output_collection name="co_cov" count="5"> <element name="0" ftype="csv"> <assert_contents> <has_n_lines n="41"/> <has_text text="g1k_0"/> </assert_contents> </element> <element name="4" ftype="csv"> <assert_contents> <has_n_lines n="41"/> <has_text text="g1k_0"/> </assert_contents> </element> </output_collection> <output_collection name="co_split_cov" count="5"> <element name="0" ftype="csv"> <assert_contents> <has_n_lines n="81"/> <has_text text="g1k_0_1"/> </assert_contents> </element> <element name="4" ftype="csv"> <assert_contents> <has_n_lines n="81"/> <has_text text="g1k_0_1"/> </assert_contents> </element> </output_collection> </test> <test expect_num_outputs="7"> <conditional name="mode"> <param name="select" value="multi"/> <conditional name="multi_fasta"> <param name="select" value="concatenated"/> <param name="input_fasta" ftype="fasta" value="input_multi.fasta.gz"/> </conditional> <param name="input_bam" ftype="bam" value="input_multi_sorted1.bam,input_multi_sorted2.bam,input_multi_sorted3.bam,input_multi_sorted4.bam,input_multi_sorted5.bam,input_multi_sorted6.bam,input_multi_sorted7.bam,input_multi_sorted8.bam,input_multi_sorted9.bam,input_multi_sorted10.bam"/> </conditional> <conditional name="min_len"> <param name="method" value="automatic"/> </conditional> <param name="ml_threshold" value="4000"/> <param name="extra_output" value="coverage,contigs"/> <output_collection name="multi_data" count="10"> <element name="S1" ftype="csv"> <assert_contents> <has_n_lines n="21"/> <has_text text="g1k_0"/> </assert_contents> </element> </output_collection> <output_collection name="multi_data_split" count="10"> <element name="S1" ftype="csv"> <assert_contents> <has_n_lines n="41"/> <has_text text="g1k_0_1"/> </assert_contents> </element> </output_collection> <output_collection name="multi_cov" count="10"> <element name="0" ftype="csv"> <assert_contents> <has_n_lines n="201"/> <has_text text="S1:g1k_5"/> </assert_contents> </element> <element name="9" ftype="csv"> <assert_contents> <has_n_lines n="201"/> <has_text text="S1:g1k_5"/> </assert_contents> </element> </output_collection> <output_collection name="multi_cov_sample" count="10"> <element name="S1" ftype="csv"> <assert_contents> <has_n_lines n="21"/> <has_text text="g1k_0"/> </assert_contents> </element> </output_collection> <output_collection name="multi_split_cov" count="10"> <element name="1" ftype="csv"> <assert_contents> <has_n_lines n="401"/> <has_text text="S1:g1k_5_1"/> </assert_contents> </element> <element name="9" ftype="csv"> <assert_contents> <has_n_lines n="401"/> <has_text text="S1:g1k_5_1"/> </assert_contents> </element> </output_collection> <output_collection name="multi_split_cov_sample" count="10"> <element name="S1" ftype="csv"> <assert_contents> <has_n_lines n="41"/> <has_text text="g1k_5_1"/> </assert_contents> </element> </output_collection> <output_collection name="multi_contigs" count="10"> <element name="S1" ftype="fasta"> <assert_contents> <has_text text=">g1k_0"/> </assert_contents> </element> <element name="S9" ftype="fasta"> <assert_contents> <has_text text=">g1k_0"/> </assert_contents> </element> </output_collection> </test> <test expect_num_outputs="2"> <conditional name="mode"> <param name="select" value="multi"/> <conditional name="multi_fasta"> <param name="select" value="multi"/> <param name="input_fasta" ftype="fasta" value="S1.fasta,S2.fasta,S3.fasta,S4.fasta,S5.fasta,S6.fasta,S7.fasta,S8.fasta,S9.fasta,S10.fasta"/> </conditional> <param name="input_bam" ftype="bam" value="input_multi_sorted1.bam,input_multi_sorted2.bam,input_multi_sorted3.bam,input_multi_sorted4.bam,input_multi_sorted5.bam,input_multi_sorted6.bam,input_multi_sorted7.bam,input_multi_sorted8.bam,input_multi_sorted9.bam,input_multi_sorted10.bam"/> </conditional> <conditional name="min_len"> <param name="method" value="automatic"/> </conditional> <param name="ml_threshold" value="4000"/> <output_collection name="multi_data" count="10"> <element name="S1" ftype="csv"> <assert_contents> <has_n_lines n="21"/> <has_text text="g1k_0"/> </assert_contents> </element> </output_collection> <output_collection name="multi_data_split" count="10"> <element name="S1" ftype="csv"> <assert_contents> <has_n_lines n="41"/> <has_text text="g1k_0_1"/> </assert_contents> </element> </output_collection> </test> </tests> <help><![CDATA[ @HELP_HEADER@ This tool generates sequence features (kmer and abundance) as training data for semi-supervised deep learning model training. Inputs ====== @HELP_INPUT_FASTA@ Outputs ======= @HELP_DATA@ ]]></help> <expand macro="citations"/> </tool>