0
|
1 import netCDF4
|
|
2 from netCDF4 import Dataset
|
|
3 import numpy as np
|
|
4 import matplotlib
|
|
5 matplotlib.use("Agg")
|
|
6 import matplotlib.pyplot as plt
|
|
7 from pylab import *
|
|
8 import sys
|
|
9 import os
|
|
10 from scipy import spatial
|
|
11 from math import radians, cos, sin, asin, sqrt
|
|
12 import itertools
|
|
13
|
|
14 #####################
|
|
15 #####################
|
|
16
|
|
17 def checklist(dim_list, dim_name, filtre, threshold):
|
|
18 if not dim_list:
|
|
19 error="Error "+str(dim_name)+" has no value "+str(filtre)+" "+str(threshold)
|
|
20 sys.exit(error)
|
|
21
|
|
22
|
|
23 #Return dist in km between two coord
|
|
24 #Thx to : https://stackoverflow.com/questions/4913349/haversine-formula-in-python-bearing-and-distance-between-two-gps-points
|
|
25 def haversine(lon1, lat1, lon2, lat2):
|
|
26 """
|
|
27 Calculate the great circle distance between two points
|
|
28 on the earth (specified in decimal degrees)
|
|
29 """
|
|
30 # convert decimal degrees to radians
|
|
31 lon1, lat1, lon2, lat2 = map(radians, [lon1, lat1, lon2, lat2])
|
|
32
|
|
33 # haversine formula
|
|
34 dlon = lon2 - lon1
|
|
35 dlat = lat2 - lat1
|
|
36 a = sin(dlat/2)**2 + cos(lat1) * cos(lat2) * sin(dlon/2)**2
|
|
37 c = 2 * asin(sqrt(a))
|
|
38 r = 6371 # Radius of earth in kilometers. Use 3956 for miles
|
|
39 return c * r
|
|
40
|
|
41
|
|
42 #Comparison functions, return a list of indexes for the user conditions
|
|
43 def is_strict_inf(filename, dim_name, threshold):
|
|
44 list_dim=[]
|
|
45 for i in range(0,filename.variables[dim_name].size):
|
|
46 if filename.variables[dim_name][i] < threshold:
|
|
47 list_dim.append(i)
|
|
48 checklist(list_dim,dim_name,"<",threshold)
|
|
49 return list_dim
|
|
50
|
|
51 def is_equal_inf(filename, dim_name, threshold):
|
|
52 list_dim=[]
|
|
53 for i in range(0,filename.variables[dim_name].size):
|
|
54 if filename.variables[dim_name][i] <= threshold:
|
|
55 list_dim.append(i)
|
|
56 checklist(list_dim,dim_name,"<=",threshold)
|
|
57 return list_dim
|
|
58
|
|
59 def is_equal_sup(filename, dim_name, threshold):
|
|
60 list_dim=[]
|
|
61 for i in range(0,filename.variables[dim_name].size):
|
|
62 if filename.variables[dim_name][i] >= threshold:
|
|
63 list_dim.append(i)
|
|
64 checklist(list_dim,dim_name,">=",threshold)
|
|
65 return list_dim
|
|
66
|
|
67 def is_strict_sup(filename, dim_name, threshold):
|
|
68 list_dim=[]
|
|
69 for i in range(0,filename.variables[dim_name].size):
|
|
70 if filename.variables[dim_name][i] > threshold:
|
|
71 list_dim.append(i)
|
|
72 checklist(list_dim,dim_name,">",threshold)
|
|
73 return list_dim
|
|
74
|
|
75 def find_nearest(array,value):
|
|
76 index = (np.abs(array-value)).argmin()
|
|
77 return index
|
|
78
|
|
79 def is_equal(filename, dim_name, value):
|
|
80 try:
|
|
81 index=filename.variables[dim_name][:].tolist().index(value)
|
|
82 except:
|
|
83 index=find_nearest(filename.variables[dim_name][:],value)
|
|
84 return index
|
|
85
|
|
86 def is_between_include(filename, dim_name, threshold1, threshold2):
|
|
87 list_dim=[]
|
|
88 for i in range(0,filename.variables[dim_name].size):
|
|
89 if filename.variables[dim_name][i] >= threshold1 and filename.variables[dim_name][i] <= threshold2:
|
|
90 list_dim.append(i)
|
|
91 checklist(list_dim,dim_name,">=",threshold1)
|
|
92 checklist(list_dim,dim_name,"=<",threshold2)
|
|
93 return list_dim
|
|
94
|
|
95 def is_between_exclude(filename, dim_name, threshold1, threshold2):
|
|
96 list_dim=[]
|
|
97 for i in range(0,filename.variables[dim_name].size):
|
|
98 if filename.variables[dim_name][i] > threshold1 and filename.variables[dim_name][i] < threshold2:
|
|
99 list_dim.append(i)
|
|
100 checklist(list_dim,dim_name,">",threshold1)
|
|
101 checklist(list_dim,dim_name,"<",threshold2)
|
|
102 return list_dim
|
|
103
|
|
104 #######################
|
|
105 #######################
|
|
106
|
|
107 #Get args
|
|
108 #Get Input file
|
|
109 inputfile=Dataset(sys.argv[1])
|
|
110 var_file_tab=sys.argv[2]
|
|
111 var=sys.argv[3] #Var chosen by user
|
|
112
|
|
113 Coord_bool=False
|
|
114
|
|
115
|
|
116 ######################
|
|
117 ######################
|
|
118 #len_threshold=1000000
|
|
119 len_threshold=7000
|
|
120 x_percent=0.75
|
|
121 threshold_latlon=100
|
|
122
|
|
123
|
|
124 #Check if coord is passed as parameter
|
|
125 arg_n=len(sys.argv)-1
|
|
126 if(((arg_n-3)%3)!=0):
|
|
127 Coord_bool=True #Useful to get closest coord
|
|
128 arg_n=arg_n-4 #Number of arg minus lat & lon
|
|
129 name_dim_lat=str(sys.argv[-4])
|
|
130 name_dim_lon=str(sys.argv[-2])
|
|
131 value_dim_lat=float(sys.argv[-3])
|
|
132 value_dim_lon=float(sys.argv[-1])
|
|
133
|
|
134 #Get all lat & lon
|
|
135 #try:
|
|
136 if True:
|
|
137 latitude=np.ma.MaskedArray(inputfile.variables[name_dim_lat])
|
|
138 longitude=np.ma.MaskedArray(inputfile.variables[name_dim_lon])
|
|
139 lat=latitude;lon=longitude #Usefull to keep the originals lat/lon vect before potentially resize it bellow.
|
|
140 len_all_coord=len(lat)*len(lon)
|
|
141
|
|
142 #print("len all coord "+str(len_all_coord)+" threshold "+str(len_threshold))
|
|
143
|
|
144 #To avoid case when all_coord is to big and need to much memory
|
|
145 #If the vector is too big, reduce it to its third in a loop until its < to the threshold
|
|
146 while len_all_coord > len_threshold:
|
|
147
|
|
148 if len(lat)<threshold_latlon: #If lat and lon are very different and lon is >> than lat. This way only lon is reduce and not lat.
|
|
149 x_percent_len_lat=99999999
|
|
150 else:
|
|
151 x_percent_len_lat=int(x_percent*len(lat))
|
|
152
|
|
153 if len(lon)<threshold_latlon: #If lat and lon are very different and lat is >> than lon. This way only lat is reduce and not lon.
|
|
154 x_percent_len_lon=99999999
|
|
155 else:
|
|
156 x_percent_len_lon=int(x_percent*len(lon))
|
|
157
|
|
158 #print("len(lat) :"+str(len(lat))+" x_percent_len_lat "+str(x_percent_len_lat))
|
|
159 #print("len(lon) :"+str(len(lon))+" x_percent_len_lon "+str(x_percent_len_lon))
|
|
160
|
|
161
|
|
162 pos_lat_user=find_nearest(lat,value_dim_lat)
|
|
163 pos_lon_user=find_nearest(lon,value_dim_lon)
|
|
164
|
|
165
|
|
166 #This part is to avoid having a vector that start bellow 0
|
|
167 lat_reduced=int(pos_lat_user-x_percent_len_lat/2-1)
|
|
168 if lat_reduced<0:
|
|
169 lat_reduced=0
|
|
170 lon_reduced=int(pos_lon_user-x_percent_len_lon/2-1)
|
|
171 if lon_reduced<0:
|
|
172 lon_reduced=0
|
|
173 #Opposite here to avoid having vector with len > to len(vector)
|
|
174 lat_extended=int(pos_lat_user+x_percent_len_lat/2-1)
|
|
175 if lat_extended>len(lat):
|
|
176 lat_extended=len(lat)
|
|
177 lon_extended=int(pos_lon_user+x_percent_len_lon/2-1)
|
|
178 if lon_extended>len(lon):
|
|
179 lon_extended=len(lon)
|
|
180
|
|
181 lat=lat[lat_reduced:lat_extended] #add a test to check if pos_lat_user-x_percent_len_lat/2-1 >0
|
|
182 lon=lon[lon_reduced:lon_extended]
|
|
183 #print("latreduced : "+str(lat_reduced)+" latextended "+str(lat_extended))
|
|
184 #print("lonreduced : "+str(lon_reduced)+" lonextended "+str(lon_extended))
|
|
185 #print("lat : "+str(lat))
|
|
186 #print("lon : "+str(lon))
|
|
187 len_all_coord=len(lat)*len(lon)
|
|
188
|
|
189 #print ("len_all_coord : "+str(len_all_coord)+". len_lat : "+str(len(lat))+" .len_lon : "+str(len(lon)))
|
|
190
|
|
191 else:
|
|
192 #except:
|
|
193 sys.exit("Latitude & Longitude not found")
|
|
194
|
|
195 #Set all lat-lon pair avaible in list_coord
|
|
196 list_coord_dispo=[]
|
|
197 for i in lat:
|
|
198 for j in lon:
|
|
199 list_coord_dispo.append(i);list_coord_dispo.append(j)
|
|
200
|
|
201 #Reshape
|
|
202 all_coord=np.reshape(list_coord_dispo,(lat.size*lon.size,2))
|
|
203 #np.set_printoptions(threshold='nan')#to print full vec
|
|
204 #print(str(all_coord))
|
|
205 noval=True
|
|
206
|
|
207
|
|
208
|
|
209 #########################
|
|
210 #########################
|
|
211
|
|
212
|
|
213 #Get the file of variables and number of dims : var.tab
|
|
214 var_file=open(var_file_tab,"r") #read
|
|
215 lines=var_file.readlines() #line
|
|
216 dim_names=[]
|
|
217 for line in lines: #for every lines
|
|
218 words=line.split()
|
|
219 if (words[0]==var): #When line match user input var
|
|
220 varndim=int(words[1]) #Get number of dim for the var
|
|
221 for dim in range(2,varndim*2+2,2): #Get dim names
|
|
222 dim_names.append(words[dim])
|
|
223 #print ("Chosen var : "+sys.argv[3]+". Number of dimensions : "+str(varndim)+". Dimensions : "+str(dim_names)) #Standard msg
|
|
224
|
|
225
|
|
226 ########################
|
|
227 ########################
|
|
228
|
|
229
|
|
230 #Use a dictionary to save every lists of indexes
|
|
231 my_dic={} ##d["string{0}".format(x)]
|
|
232
|
|
233 for i in range(4,arg_n,3):
|
|
234 #print("\nDimension name : "+sys.argv[i]+" action : "+sys.argv[i+1]+" .Value : "+sys.argv[i+2]+"\n") #Standard msg
|
|
235
|
|
236 #Check if the dim selected for filtering is present in the var dimensions.
|
|
237 if (sys.argv[i] not in dim_names):
|
|
238 print("Warning ! "+sys.argv[i]+" is not a dimension of "+var+".\nThis filter will be skipped\nCheck in the file \"variables\" the dimensions available.\n\n")
|
|
239 pass
|
|
240
|
|
241 my_dic["string{0}".format(i)]="list_index_dim"
|
|
242 my_dic_index="list_index_dim"+str(sys.argv[i]) #Possible improvement: Check if lon/lat are not parsed again
|
|
243
|
|
244 #Apply every user filter. Call function and return list of index wich validate condition for every dim.
|
|
245 if (sys.argv[i+1]=="l"): #<
|
|
246 my_dic[my_dic_index]=is_strict_inf(inputfile, sys.argv[i], float(sys.argv[i+2]))
|
|
247 if (sys.argv[i+1]=="le"): #<=
|
|
248 my_dic[my_dic_index]=is_equal_inf(inputfile, sys.argv[i], float(sys.argv[i+2]))
|
|
249 if (sys.argv[i+1]=="g"): #>
|
|
250 my_dic[my_dic_index]=is_strict_sup(inputfile, sys.argv[i], float(sys.argv[i+2]))
|
|
251 if (sys.argv[i+1]=="ge"): #>=
|
|
252 my_dic[my_dic_index]=is_equal_sup(inputfile, sys.argv[i], float(sys.argv[i+2]))
|
|
253 if (sys.argv[i+1]=="e"): #==
|
|
254 my_dic[my_dic_index]=is_equal(inputfile, sys.argv[i], float(sys.argv[i+2]))
|
|
255 if (sys.argv[i+1]==":"): #all
|
|
256 my_dic[my_dic_index]=np.arange(inputfile.variables[sys.argv[i]].size)
|
|
257 if (sys.argv[i+1]=="be"): #between_exclude
|
|
258 #Get the 2 thresholds from the arg which looks like "threshold1-threshold2"
|
|
259 threshold1=sys.argv[i+2].split("-")[0]
|
|
260 threshold2=sys.argv[i+2].split("-")[1]
|
|
261 my_dic[my_dic_index]=is_between_exclude(inputfile, sys.argv[i], float(threshold1), float(threshold2))
|
|
262 if (sys.argv[i+1]=="bi"): #between_include
|
|
263 #Get the 2 thresholds from the arg which looks like "threshold1-threshold2"
|
|
264 threshold1=sys.argv[i+2].split("-")[0]
|
|
265 threshold2=sys.argv[i+2].split("-")[1]
|
|
266 my_dic[my_dic_index]=is_between_include(inputfile, sys.argv[i], float(threshold1), float(threshold2))
|
|
267
|
|
268 #####################
|
|
269 #####################
|
|
270
|
|
271
|
|
272 #If precise coord given.
|
|
273 if Coord_bool:
|
|
274 while noval: #While no closest coord with valid values is found
|
|
275 #Return closest coord avaible
|
|
276 tree=spatial.KDTree(all_coord)
|
|
277 closest_coord=(tree.query([(value_dim_lat,value_dim_lon)]))
|
|
278 cc_index=closest_coord[1]
|
|
279
|
|
280 closest_lat=float(all_coord[closest_coord[1]][0][0])
|
|
281 closest_lon=float(all_coord[closest_coord[1]][0][1])
|
|
282
|
|
283 #Get coord index into dictionary
|
|
284 my_dic_index="list_index_dim"+str(name_dim_lat)
|
|
285 my_dic[my_dic_index]=latitude.tolist().index(closest_lat)
|
|
286
|
|
287 my_dic_index="list_index_dim"+str(name_dim_lon)
|
|
288 my_dic[my_dic_index]=longitude.tolist().index(closest_lon)
|
|
289
|
|
290
|
|
291 #All dictionary are saved in the string exec2 which will be exec(). Value got are in vec2
|
|
292 exec2="vec2=inputfile.variables['"+var+"']["
|
|
293 first=True
|
|
294 for i in dim_names: #Every dim are in the right order
|
|
295 if not first:
|
|
296 exec2=exec2+","
|
|
297 dimension_indexes="my_dic[\"list_index_dim"+i+"\"]" #new dim, custom name dic
|
|
298 try: #If some error or no specific user choices; every indexes are used for the selected dim.
|
|
299 exec(dimension_indexes)
|
|
300 except:
|
|
301 dimension_indexes=":"
|
|
302 exec2=exec2+dimension_indexes #Concatenate dim
|
|
303 first=False #Not the first element now
|
|
304 exec2=exec2+"]"
|
|
305 #print exec2 #To check integrity of the string
|
|
306 exec(exec2) #Execution, value are in vec2.
|
|
307 #print vec2 #Get the value, standard output
|
|
308
|
|
309 #Check integrity of vec2. We don't want NA values
|
|
310 i=0
|
|
311 #Check every value, if at least one non NA is found vec2 and the current closest coords are validated
|
|
312 vecsize=vec2.size
|
|
313 #print (str(vecsize))
|
|
314 if vecsize>1:
|
|
315 while i<vecsize:
|
|
316 #print (str(vec2))
|
|
317 if vec2[i]!="nan":
|
|
318 break
|
|
319 else:
|
|
320 i=i+1
|
|
321 else:
|
|
322 if vec2!="nan":
|
|
323 break
|
|
324 else:
|
|
325 i=i+1
|
|
326
|
|
327 if i<vecsize: #There is at least 1 nonNA value
|
|
328 noval=False
|
|
329 else: #If only NA : pop the closest coord and search in the second closest coord in the next loop.
|
|
330 all_coord=np.delete(all_coord,cc_index,0)
|
|
331
|
|
332
|
|
333 #Same as before, dictionary use in exec2. exec(exec2) give vec2 and the values wanted.
|
|
334 else:
|
|
335 exec2="vec2=inputfile.variables['"+str(sys.argv[3])+"']["
|
|
336 first=True
|
|
337 for i in dim_names: #Respect order
|
|
338 if not first:
|
|
339 exec2=exec2+","
|
|
340 dimension_indexes="my_dic[\"list_index_dim"+i+"\"]"
|
|
341 try: #Avoid error and exit
|
|
342 exec(dimension_indexes)
|
|
343 except:
|
|
344 dimension_indexes=":"
|
|
345 exec2=exec2+dimension_indexes
|
|
346 first=False
|
|
347 exec2=exec2+"]"
|
|
348 exec(exec2)
|
|
349
|
|
350
|
|
351 ########################
|
|
352 ########################
|
|
353
|
|
354
|
|
355 #This part create the header of every value.
|
|
356 #Values of every dim from the var is saved in a list : b[].
|
|
357 #All the lists b are saved in the unique list a[]
|
|
358 #All the combinations of the dim values inside a[] are the headers of the vec2 values
|
|
359
|
|
360 #Also write dim_name into a file to make clear header.
|
|
361 fo=open("header_names",'w')
|
|
362
|
|
363 a=[]
|
|
364 for i in dim_names:
|
|
365 try: #If it doesn't work here its because my_dic= : so there is no size. Except will direcly take size of the dim.
|
|
366 size_dim=inputfile[i][my_dic['list_index_dim'+i]].size
|
|
367 except:
|
|
368 size_dim=inputfile[i].size
|
|
369 my_dic['list_index_dim'+i]=range(size_dim)
|
|
370
|
|
371 #print (i,size_dim) #Standard msg
|
|
372 b=[]
|
|
373 #Check size is useful since b.append(inputfile[i][my_dic['list_index_dim'+i][0]]) won't work
|
|
374 if size_dim>1:
|
|
375 for s in range(0,size_dim):
|
|
376 b.append(inputfile[i][my_dic['list_index_dim'+i][s]])
|
|
377 #print (i,inputfile[i][my_dic['list_index_dim'+i][s]])
|
|
378 else:
|
|
379 b.append(inputfile[i][my_dic['list_index_dim'+i]])
|
|
380 #print (i,inputfile[i][my_dic['list_index_dim'+i]])
|
|
381
|
|
382 a.append(b)
|
|
383 fo.write(i+"\t")
|
|
384 if Coord_bool:
|
|
385 fo.write("input_lat\t"+"input_lon\t")
|
|
386 fo.write(var+"\n")
|
|
387 fo.close()
|
|
388
|
|
389
|
|
390 ######################
|
|
391 ######################
|
|
392
|
|
393
|
|
394 #Write header in file
|
|
395 fo=open("header",'w')
|
|
396 for combination in itertools.product(*a):
|
|
397 if Coord_bool:
|
|
398 fo.write(str(combination)+"_"+str(value_dim_lat)+"_"+str(value_dim_lon)+"\t")
|
|
399 else:
|
|
400 fo.write(str(combination)+"\t")
|
|
401 fo.write("\n")
|
|
402 fo.close()
|
|
403
|
|
404
|
|
405 #Write vec2 in a tabular formated file
|
|
406 fo=open("sortie.tabular",'w')
|
|
407 #print(str(vec2))
|
|
408 try:
|
|
409 vec2.tofile(fo,sep="\t",format="%s")
|
|
410 except:
|
|
411 vec3=np.ma.filled(vec2,np.nan)
|
|
412 vec3.tofile(fo,sep="\t",format="%s")
|
|
413 fo.close()
|
|
414
|
|
415
|
|
416 ######################
|
|
417 ######################
|
|
418
|
|
419
|
|
420 #Final sweet msg
|
|
421 print (var+" values successffuly extracted from "+sys.argv[1]+" !")
|