Mercurial > repos > mnhn65mo > netcdf_handler
view netcdf_read.py @ 0:8da8ec7da45f draft default tip
Uploaded
author | mnhn65mo |
---|---|
date | Thu, 02 Aug 2018 09:24:38 -0400 |
parents | |
children |
line wrap: on
line source
import netCDF4 from netCDF4 import Dataset import numpy as np import matplotlib matplotlib.use("Agg") import matplotlib.pyplot as plt from pylab import * import sys import os from scipy import spatial from math import radians, cos, sin, asin, sqrt import itertools ##################### ##################### def checklist(dim_list, dim_name, filtre, threshold): if not dim_list: error="Error "+str(dim_name)+" has no value "+str(filtre)+" "+str(threshold) sys.exit(error) #Return dist in km between two coord #Thx to : https://stackoverflow.com/questions/4913349/haversine-formula-in-python-bearing-and-distance-between-two-gps-points def haversine(lon1, lat1, lon2, lat2): """ Calculate the great circle distance between two points on the earth (specified in decimal degrees) """ # convert decimal degrees to radians lon1, lat1, lon2, lat2 = map(radians, [lon1, lat1, lon2, lat2]) # haversine formula dlon = lon2 - lon1 dlat = lat2 - lat1 a = sin(dlat/2)**2 + cos(lat1) * cos(lat2) * sin(dlon/2)**2 c = 2 * asin(sqrt(a)) r = 6371 # Radius of earth in kilometers. Use 3956 for miles return c * r #Comparison functions, return a list of indexes for the user conditions def is_strict_inf(filename, dim_name, threshold): list_dim=[] for i in range(0,filename.variables[dim_name].size): if filename.variables[dim_name][i] < threshold: list_dim.append(i) checklist(list_dim,dim_name,"<",threshold) return list_dim def is_equal_inf(filename, dim_name, threshold): list_dim=[] for i in range(0,filename.variables[dim_name].size): if filename.variables[dim_name][i] <= threshold: list_dim.append(i) checklist(list_dim,dim_name,"<=",threshold) return list_dim def is_equal_sup(filename, dim_name, threshold): list_dim=[] for i in range(0,filename.variables[dim_name].size): if filename.variables[dim_name][i] >= threshold: list_dim.append(i) checklist(list_dim,dim_name,">=",threshold) return list_dim def is_strict_sup(filename, dim_name, threshold): list_dim=[] for i in range(0,filename.variables[dim_name].size): if filename.variables[dim_name][i] > threshold: list_dim.append(i) checklist(list_dim,dim_name,">",threshold) return list_dim def find_nearest(array,value): index = (np.abs(array-value)).argmin() return index def is_equal(filename, dim_name, value): try: index=filename.variables[dim_name][:].tolist().index(value) except: index=find_nearest(filename.variables[dim_name][:],value) return index def is_between_include(filename, dim_name, threshold1, threshold2): list_dim=[] for i in range(0,filename.variables[dim_name].size): if filename.variables[dim_name][i] >= threshold1 and filename.variables[dim_name][i] <= threshold2: list_dim.append(i) checklist(list_dim,dim_name,">=",threshold1) checklist(list_dim,dim_name,"=<",threshold2) return list_dim def is_between_exclude(filename, dim_name, threshold1, threshold2): list_dim=[] for i in range(0,filename.variables[dim_name].size): if filename.variables[dim_name][i] > threshold1 and filename.variables[dim_name][i] < threshold2: list_dim.append(i) checklist(list_dim,dim_name,">",threshold1) checklist(list_dim,dim_name,"<",threshold2) return list_dim ####################### ####################### #Get args #Get Input file inputfile=Dataset(sys.argv[1]) var_file_tab=sys.argv[2] var=sys.argv[3] #Var chosen by user Coord_bool=False ###################### ###################### #len_threshold=1000000 len_threshold=7000 x_percent=0.75 threshold_latlon=100 #Check if coord is passed as parameter arg_n=len(sys.argv)-1 if(((arg_n-3)%3)!=0): Coord_bool=True #Useful to get closest coord arg_n=arg_n-4 #Number of arg minus lat & lon name_dim_lat=str(sys.argv[-4]) name_dim_lon=str(sys.argv[-2]) value_dim_lat=float(sys.argv[-3]) value_dim_lon=float(sys.argv[-1]) #Get all lat & lon #try: if True: latitude=np.ma.MaskedArray(inputfile.variables[name_dim_lat]) longitude=np.ma.MaskedArray(inputfile.variables[name_dim_lon]) lat=latitude;lon=longitude #Usefull to keep the originals lat/lon vect before potentially resize it bellow. len_all_coord=len(lat)*len(lon) #print("len all coord "+str(len_all_coord)+" threshold "+str(len_threshold)) #To avoid case when all_coord is to big and need to much memory #If the vector is too big, reduce it to its third in a loop until its < to the threshold while len_all_coord > len_threshold: if len(lat)<threshold_latlon: #If lat and lon are very different and lon is >> than lat. This way only lon is reduce and not lat. x_percent_len_lat=99999999 else: x_percent_len_lat=int(x_percent*len(lat)) if len(lon)<threshold_latlon: #If lat and lon are very different and lat is >> than lon. This way only lat is reduce and not lon. x_percent_len_lon=99999999 else: x_percent_len_lon=int(x_percent*len(lon)) #print("len(lat) :"+str(len(lat))+" x_percent_len_lat "+str(x_percent_len_lat)) #print("len(lon) :"+str(len(lon))+" x_percent_len_lon "+str(x_percent_len_lon)) pos_lat_user=find_nearest(lat,value_dim_lat) pos_lon_user=find_nearest(lon,value_dim_lon) #This part is to avoid having a vector that start bellow 0 lat_reduced=int(pos_lat_user-x_percent_len_lat/2-1) if lat_reduced<0: lat_reduced=0 lon_reduced=int(pos_lon_user-x_percent_len_lon/2-1) if lon_reduced<0: lon_reduced=0 #Opposite here to avoid having vector with len > to len(vector) lat_extended=int(pos_lat_user+x_percent_len_lat/2-1) if lat_extended>len(lat): lat_extended=len(lat) lon_extended=int(pos_lon_user+x_percent_len_lon/2-1) if lon_extended>len(lon): lon_extended=len(lon) lat=lat[lat_reduced:lat_extended] #add a test to check if pos_lat_user-x_percent_len_lat/2-1 >0 lon=lon[lon_reduced:lon_extended] #print("latreduced : "+str(lat_reduced)+" latextended "+str(lat_extended)) #print("lonreduced : "+str(lon_reduced)+" lonextended "+str(lon_extended)) #print("lat : "+str(lat)) #print("lon : "+str(lon)) len_all_coord=len(lat)*len(lon) #print ("len_all_coord : "+str(len_all_coord)+". len_lat : "+str(len(lat))+" .len_lon : "+str(len(lon))) else: #except: sys.exit("Latitude & Longitude not found") #Set all lat-lon pair avaible in list_coord list_coord_dispo=[] for i in lat: for j in lon: list_coord_dispo.append(i);list_coord_dispo.append(j) #Reshape all_coord=np.reshape(list_coord_dispo,(lat.size*lon.size,2)) #np.set_printoptions(threshold='nan')#to print full vec #print(str(all_coord)) noval=True ######################### ######################### #Get the file of variables and number of dims : var.tab var_file=open(var_file_tab,"r") #read lines=var_file.readlines() #line dim_names=[] for line in lines: #for every lines words=line.split() if (words[0]==var): #When line match user input var varndim=int(words[1]) #Get number of dim for the var for dim in range(2,varndim*2+2,2): #Get dim names dim_names.append(words[dim]) #print ("Chosen var : "+sys.argv[3]+". Number of dimensions : "+str(varndim)+". Dimensions : "+str(dim_names)) #Standard msg ######################## ######################## #Use a dictionary to save every lists of indexes my_dic={} ##d["string{0}".format(x)] for i in range(4,arg_n,3): #print("\nDimension name : "+sys.argv[i]+" action : "+sys.argv[i+1]+" .Value : "+sys.argv[i+2]+"\n") #Standard msg #Check if the dim selected for filtering is present in the var dimensions. if (sys.argv[i] not in dim_names): print("Warning ! "+sys.argv[i]+" is not a dimension of "+var+".\nThis filter will be skipped\nCheck in the file \"variables\" the dimensions available.\n\n") pass my_dic["string{0}".format(i)]="list_index_dim" my_dic_index="list_index_dim"+str(sys.argv[i]) #Possible improvement: Check if lon/lat are not parsed again #Apply every user filter. Call function and return list of index wich validate condition for every dim. if (sys.argv[i+1]=="l"): #< my_dic[my_dic_index]=is_strict_inf(inputfile, sys.argv[i], float(sys.argv[i+2])) if (sys.argv[i+1]=="le"): #<= my_dic[my_dic_index]=is_equal_inf(inputfile, sys.argv[i], float(sys.argv[i+2])) if (sys.argv[i+1]=="g"): #> my_dic[my_dic_index]=is_strict_sup(inputfile, sys.argv[i], float(sys.argv[i+2])) if (sys.argv[i+1]=="ge"): #>= my_dic[my_dic_index]=is_equal_sup(inputfile, sys.argv[i], float(sys.argv[i+2])) if (sys.argv[i+1]=="e"): #== my_dic[my_dic_index]=is_equal(inputfile, sys.argv[i], float(sys.argv[i+2])) if (sys.argv[i+1]==":"): #all my_dic[my_dic_index]=np.arange(inputfile.variables[sys.argv[i]].size) if (sys.argv[i+1]=="be"): #between_exclude #Get the 2 thresholds from the arg which looks like "threshold1-threshold2" threshold1=sys.argv[i+2].split("-")[0] threshold2=sys.argv[i+2].split("-")[1] my_dic[my_dic_index]=is_between_exclude(inputfile, sys.argv[i], float(threshold1), float(threshold2)) if (sys.argv[i+1]=="bi"): #between_include #Get the 2 thresholds from the arg which looks like "threshold1-threshold2" threshold1=sys.argv[i+2].split("-")[0] threshold2=sys.argv[i+2].split("-")[1] my_dic[my_dic_index]=is_between_include(inputfile, sys.argv[i], float(threshold1), float(threshold2)) ##################### ##################### #If precise coord given. if Coord_bool: while noval: #While no closest coord with valid values is found #Return closest coord avaible tree=spatial.KDTree(all_coord) closest_coord=(tree.query([(value_dim_lat,value_dim_lon)])) cc_index=closest_coord[1] closest_lat=float(all_coord[closest_coord[1]][0][0]) closest_lon=float(all_coord[closest_coord[1]][0][1]) #Get coord index into dictionary my_dic_index="list_index_dim"+str(name_dim_lat) my_dic[my_dic_index]=latitude.tolist().index(closest_lat) my_dic_index="list_index_dim"+str(name_dim_lon) my_dic[my_dic_index]=longitude.tolist().index(closest_lon) #All dictionary are saved in the string exec2 which will be exec(). Value got are in vec2 exec2="vec2=inputfile.variables['"+var+"'][" first=True for i in dim_names: #Every dim are in the right order if not first: exec2=exec2+"," dimension_indexes="my_dic[\"list_index_dim"+i+"\"]" #new dim, custom name dic try: #If some error or no specific user choices; every indexes are used for the selected dim. exec(dimension_indexes) except: dimension_indexes=":" exec2=exec2+dimension_indexes #Concatenate dim first=False #Not the first element now exec2=exec2+"]" #print exec2 #To check integrity of the string exec(exec2) #Execution, value are in vec2. #print vec2 #Get the value, standard output #Check integrity of vec2. We don't want NA values i=0 #Check every value, if at least one non NA is found vec2 and the current closest coords are validated vecsize=vec2.size #print (str(vecsize)) if vecsize>1: while i<vecsize: #print (str(vec2)) if vec2[i]!="nan": break else: i=i+1 else: if vec2!="nan": break else: i=i+1 if i<vecsize: #There is at least 1 nonNA value noval=False else: #If only NA : pop the closest coord and search in the second closest coord in the next loop. all_coord=np.delete(all_coord,cc_index,0) #Same as before, dictionary use in exec2. exec(exec2) give vec2 and the values wanted. else: exec2="vec2=inputfile.variables['"+str(sys.argv[3])+"'][" first=True for i in dim_names: #Respect order if not first: exec2=exec2+"," dimension_indexes="my_dic[\"list_index_dim"+i+"\"]" try: #Avoid error and exit exec(dimension_indexes) except: dimension_indexes=":" exec2=exec2+dimension_indexes first=False exec2=exec2+"]" exec(exec2) ######################## ######################## #This part create the header of every value. #Values of every dim from the var is saved in a list : b[]. #All the lists b are saved in the unique list a[] #All the combinations of the dim values inside a[] are the headers of the vec2 values #Also write dim_name into a file to make clear header. fo=open("header_names",'w') a=[] for i in dim_names: try: #If it doesn't work here its because my_dic= : so there is no size. Except will direcly take size of the dim. size_dim=inputfile[i][my_dic['list_index_dim'+i]].size except: size_dim=inputfile[i].size my_dic['list_index_dim'+i]=range(size_dim) #print (i,size_dim) #Standard msg b=[] #Check size is useful since b.append(inputfile[i][my_dic['list_index_dim'+i][0]]) won't work if size_dim>1: for s in range(0,size_dim): b.append(inputfile[i][my_dic['list_index_dim'+i][s]]) #print (i,inputfile[i][my_dic['list_index_dim'+i][s]]) else: b.append(inputfile[i][my_dic['list_index_dim'+i]]) #print (i,inputfile[i][my_dic['list_index_dim'+i]]) a.append(b) fo.write(i+"\t") if Coord_bool: fo.write("input_lat\t"+"input_lon\t") fo.write(var+"\n") fo.close() ###################### ###################### #Write header in file fo=open("header",'w') for combination in itertools.product(*a): if Coord_bool: fo.write(str(combination)+"_"+str(value_dim_lat)+"_"+str(value_dim_lon)+"\t") else: fo.write(str(combination)+"\t") fo.write("\n") fo.close() #Write vec2 in a tabular formated file fo=open("sortie.tabular",'w') #print(str(vec2)) try: vec2.tofile(fo,sep="\t",format="%s") except: vec3=np.ma.filled(vec2,np.nan) vec3.tofile(fo,sep="\t",format="%s") fo.close() ###################### ###################### #Final sweet msg print (var+" values successffuly extracted from "+sys.argv[1]+" !")