Mercurial > repos > mnhn65mo > netcdf_handler
comparison netcdf_read.py @ 0:8da8ec7da45f draft default tip
Uploaded
| author | mnhn65mo |
|---|---|
| date | Thu, 02 Aug 2018 09:24:38 -0400 |
| parents | |
| children |
comparison
equal
deleted
inserted
replaced
| -1:000000000000 | 0:8da8ec7da45f |
|---|---|
| 1 import netCDF4 | |
| 2 from netCDF4 import Dataset | |
| 3 import numpy as np | |
| 4 import matplotlib | |
| 5 matplotlib.use("Agg") | |
| 6 import matplotlib.pyplot as plt | |
| 7 from pylab import * | |
| 8 import sys | |
| 9 import os | |
| 10 from scipy import spatial | |
| 11 from math import radians, cos, sin, asin, sqrt | |
| 12 import itertools | |
| 13 | |
| 14 ##################### | |
| 15 ##################### | |
| 16 | |
| 17 def checklist(dim_list, dim_name, filtre, threshold): | |
| 18 if not dim_list: | |
| 19 error="Error "+str(dim_name)+" has no value "+str(filtre)+" "+str(threshold) | |
| 20 sys.exit(error) | |
| 21 | |
| 22 | |
| 23 #Return dist in km between two coord | |
| 24 #Thx to : https://stackoverflow.com/questions/4913349/haversine-formula-in-python-bearing-and-distance-between-two-gps-points | |
| 25 def haversine(lon1, lat1, lon2, lat2): | |
| 26 """ | |
| 27 Calculate the great circle distance between two points | |
| 28 on the earth (specified in decimal degrees) | |
| 29 """ | |
| 30 # convert decimal degrees to radians | |
| 31 lon1, lat1, lon2, lat2 = map(radians, [lon1, lat1, lon2, lat2]) | |
| 32 | |
| 33 # haversine formula | |
| 34 dlon = lon2 - lon1 | |
| 35 dlat = lat2 - lat1 | |
| 36 a = sin(dlat/2)**2 + cos(lat1) * cos(lat2) * sin(dlon/2)**2 | |
| 37 c = 2 * asin(sqrt(a)) | |
| 38 r = 6371 # Radius of earth in kilometers. Use 3956 for miles | |
| 39 return c * r | |
| 40 | |
| 41 | |
| 42 #Comparison functions, return a list of indexes for the user conditions | |
| 43 def is_strict_inf(filename, dim_name, threshold): | |
| 44 list_dim=[] | |
| 45 for i in range(0,filename.variables[dim_name].size): | |
| 46 if filename.variables[dim_name][i] < threshold: | |
| 47 list_dim.append(i) | |
| 48 checklist(list_dim,dim_name,"<",threshold) | |
| 49 return list_dim | |
| 50 | |
| 51 def is_equal_inf(filename, dim_name, threshold): | |
| 52 list_dim=[] | |
| 53 for i in range(0,filename.variables[dim_name].size): | |
| 54 if filename.variables[dim_name][i] <= threshold: | |
| 55 list_dim.append(i) | |
| 56 checklist(list_dim,dim_name,"<=",threshold) | |
| 57 return list_dim | |
| 58 | |
| 59 def is_equal_sup(filename, dim_name, threshold): | |
| 60 list_dim=[] | |
| 61 for i in range(0,filename.variables[dim_name].size): | |
| 62 if filename.variables[dim_name][i] >= threshold: | |
| 63 list_dim.append(i) | |
| 64 checklist(list_dim,dim_name,">=",threshold) | |
| 65 return list_dim | |
| 66 | |
| 67 def is_strict_sup(filename, dim_name, threshold): | |
| 68 list_dim=[] | |
| 69 for i in range(0,filename.variables[dim_name].size): | |
| 70 if filename.variables[dim_name][i] > threshold: | |
| 71 list_dim.append(i) | |
| 72 checklist(list_dim,dim_name,">",threshold) | |
| 73 return list_dim | |
| 74 | |
| 75 def find_nearest(array,value): | |
| 76 index = (np.abs(array-value)).argmin() | |
| 77 return index | |
| 78 | |
| 79 def is_equal(filename, dim_name, value): | |
| 80 try: | |
| 81 index=filename.variables[dim_name][:].tolist().index(value) | |
| 82 except: | |
| 83 index=find_nearest(filename.variables[dim_name][:],value) | |
| 84 return index | |
| 85 | |
| 86 def is_between_include(filename, dim_name, threshold1, threshold2): | |
| 87 list_dim=[] | |
| 88 for i in range(0,filename.variables[dim_name].size): | |
| 89 if filename.variables[dim_name][i] >= threshold1 and filename.variables[dim_name][i] <= threshold2: | |
| 90 list_dim.append(i) | |
| 91 checklist(list_dim,dim_name,">=",threshold1) | |
| 92 checklist(list_dim,dim_name,"=<",threshold2) | |
| 93 return list_dim | |
| 94 | |
| 95 def is_between_exclude(filename, dim_name, threshold1, threshold2): | |
| 96 list_dim=[] | |
| 97 for i in range(0,filename.variables[dim_name].size): | |
| 98 if filename.variables[dim_name][i] > threshold1 and filename.variables[dim_name][i] < threshold2: | |
| 99 list_dim.append(i) | |
| 100 checklist(list_dim,dim_name,">",threshold1) | |
| 101 checklist(list_dim,dim_name,"<",threshold2) | |
| 102 return list_dim | |
| 103 | |
| 104 ####################### | |
| 105 ####################### | |
| 106 | |
| 107 #Get args | |
| 108 #Get Input file | |
| 109 inputfile=Dataset(sys.argv[1]) | |
| 110 var_file_tab=sys.argv[2] | |
| 111 var=sys.argv[3] #Var chosen by user | |
| 112 | |
| 113 Coord_bool=False | |
| 114 | |
| 115 | |
| 116 ###################### | |
| 117 ###################### | |
| 118 #len_threshold=1000000 | |
| 119 len_threshold=7000 | |
| 120 x_percent=0.75 | |
| 121 threshold_latlon=100 | |
| 122 | |
| 123 | |
| 124 #Check if coord is passed as parameter | |
| 125 arg_n=len(sys.argv)-1 | |
| 126 if(((arg_n-3)%3)!=0): | |
| 127 Coord_bool=True #Useful to get closest coord | |
| 128 arg_n=arg_n-4 #Number of arg minus lat & lon | |
| 129 name_dim_lat=str(sys.argv[-4]) | |
| 130 name_dim_lon=str(sys.argv[-2]) | |
| 131 value_dim_lat=float(sys.argv[-3]) | |
| 132 value_dim_lon=float(sys.argv[-1]) | |
| 133 | |
| 134 #Get all lat & lon | |
| 135 #try: | |
| 136 if True: | |
| 137 latitude=np.ma.MaskedArray(inputfile.variables[name_dim_lat]) | |
| 138 longitude=np.ma.MaskedArray(inputfile.variables[name_dim_lon]) | |
| 139 lat=latitude;lon=longitude #Usefull to keep the originals lat/lon vect before potentially resize it bellow. | |
| 140 len_all_coord=len(lat)*len(lon) | |
| 141 | |
| 142 #print("len all coord "+str(len_all_coord)+" threshold "+str(len_threshold)) | |
| 143 | |
| 144 #To avoid case when all_coord is to big and need to much memory | |
| 145 #If the vector is too big, reduce it to its third in a loop until its < to the threshold | |
| 146 while len_all_coord > len_threshold: | |
| 147 | |
| 148 if len(lat)<threshold_latlon: #If lat and lon are very different and lon is >> than lat. This way only lon is reduce and not lat. | |
| 149 x_percent_len_lat=99999999 | |
| 150 else: | |
| 151 x_percent_len_lat=int(x_percent*len(lat)) | |
| 152 | |
| 153 if len(lon)<threshold_latlon: #If lat and lon are very different and lat is >> than lon. This way only lat is reduce and not lon. | |
| 154 x_percent_len_lon=99999999 | |
| 155 else: | |
| 156 x_percent_len_lon=int(x_percent*len(lon)) | |
| 157 | |
| 158 #print("len(lat) :"+str(len(lat))+" x_percent_len_lat "+str(x_percent_len_lat)) | |
| 159 #print("len(lon) :"+str(len(lon))+" x_percent_len_lon "+str(x_percent_len_lon)) | |
| 160 | |
| 161 | |
| 162 pos_lat_user=find_nearest(lat,value_dim_lat) | |
| 163 pos_lon_user=find_nearest(lon,value_dim_lon) | |
| 164 | |
| 165 | |
| 166 #This part is to avoid having a vector that start bellow 0 | |
| 167 lat_reduced=int(pos_lat_user-x_percent_len_lat/2-1) | |
| 168 if lat_reduced<0: | |
| 169 lat_reduced=0 | |
| 170 lon_reduced=int(pos_lon_user-x_percent_len_lon/2-1) | |
| 171 if lon_reduced<0: | |
| 172 lon_reduced=0 | |
| 173 #Opposite here to avoid having vector with len > to len(vector) | |
| 174 lat_extended=int(pos_lat_user+x_percent_len_lat/2-1) | |
| 175 if lat_extended>len(lat): | |
| 176 lat_extended=len(lat) | |
| 177 lon_extended=int(pos_lon_user+x_percent_len_lon/2-1) | |
| 178 if lon_extended>len(lon): | |
| 179 lon_extended=len(lon) | |
| 180 | |
| 181 lat=lat[lat_reduced:lat_extended] #add a test to check if pos_lat_user-x_percent_len_lat/2-1 >0 | |
| 182 lon=lon[lon_reduced:lon_extended] | |
| 183 #print("latreduced : "+str(lat_reduced)+" latextended "+str(lat_extended)) | |
| 184 #print("lonreduced : "+str(lon_reduced)+" lonextended "+str(lon_extended)) | |
| 185 #print("lat : "+str(lat)) | |
| 186 #print("lon : "+str(lon)) | |
| 187 len_all_coord=len(lat)*len(lon) | |
| 188 | |
| 189 #print ("len_all_coord : "+str(len_all_coord)+". len_lat : "+str(len(lat))+" .len_lon : "+str(len(lon))) | |
| 190 | |
| 191 else: | |
| 192 #except: | |
| 193 sys.exit("Latitude & Longitude not found") | |
| 194 | |
| 195 #Set all lat-lon pair avaible in list_coord | |
| 196 list_coord_dispo=[] | |
| 197 for i in lat: | |
| 198 for j in lon: | |
| 199 list_coord_dispo.append(i);list_coord_dispo.append(j) | |
| 200 | |
| 201 #Reshape | |
| 202 all_coord=np.reshape(list_coord_dispo,(lat.size*lon.size,2)) | |
| 203 #np.set_printoptions(threshold='nan')#to print full vec | |
| 204 #print(str(all_coord)) | |
| 205 noval=True | |
| 206 | |
| 207 | |
| 208 | |
| 209 ######################### | |
| 210 ######################### | |
| 211 | |
| 212 | |
| 213 #Get the file of variables and number of dims : var.tab | |
| 214 var_file=open(var_file_tab,"r") #read | |
| 215 lines=var_file.readlines() #line | |
| 216 dim_names=[] | |
| 217 for line in lines: #for every lines | |
| 218 words=line.split() | |
| 219 if (words[0]==var): #When line match user input var | |
| 220 varndim=int(words[1]) #Get number of dim for the var | |
| 221 for dim in range(2,varndim*2+2,2): #Get dim names | |
| 222 dim_names.append(words[dim]) | |
| 223 #print ("Chosen var : "+sys.argv[3]+". Number of dimensions : "+str(varndim)+". Dimensions : "+str(dim_names)) #Standard msg | |
| 224 | |
| 225 | |
| 226 ######################## | |
| 227 ######################## | |
| 228 | |
| 229 | |
| 230 #Use a dictionary to save every lists of indexes | |
| 231 my_dic={} ##d["string{0}".format(x)] | |
| 232 | |
| 233 for i in range(4,arg_n,3): | |
| 234 #print("\nDimension name : "+sys.argv[i]+" action : "+sys.argv[i+1]+" .Value : "+sys.argv[i+2]+"\n") #Standard msg | |
| 235 | |
| 236 #Check if the dim selected for filtering is present in the var dimensions. | |
| 237 if (sys.argv[i] not in dim_names): | |
| 238 print("Warning ! "+sys.argv[i]+" is not a dimension of "+var+".\nThis filter will be skipped\nCheck in the file \"variables\" the dimensions available.\n\n") | |
| 239 pass | |
| 240 | |
| 241 my_dic["string{0}".format(i)]="list_index_dim" | |
| 242 my_dic_index="list_index_dim"+str(sys.argv[i]) #Possible improvement: Check if lon/lat are not parsed again | |
| 243 | |
| 244 #Apply every user filter. Call function and return list of index wich validate condition for every dim. | |
| 245 if (sys.argv[i+1]=="l"): #< | |
| 246 my_dic[my_dic_index]=is_strict_inf(inputfile, sys.argv[i], float(sys.argv[i+2])) | |
| 247 if (sys.argv[i+1]=="le"): #<= | |
| 248 my_dic[my_dic_index]=is_equal_inf(inputfile, sys.argv[i], float(sys.argv[i+2])) | |
| 249 if (sys.argv[i+1]=="g"): #> | |
| 250 my_dic[my_dic_index]=is_strict_sup(inputfile, sys.argv[i], float(sys.argv[i+2])) | |
| 251 if (sys.argv[i+1]=="ge"): #>= | |
| 252 my_dic[my_dic_index]=is_equal_sup(inputfile, sys.argv[i], float(sys.argv[i+2])) | |
| 253 if (sys.argv[i+1]=="e"): #== | |
| 254 my_dic[my_dic_index]=is_equal(inputfile, sys.argv[i], float(sys.argv[i+2])) | |
| 255 if (sys.argv[i+1]==":"): #all | |
| 256 my_dic[my_dic_index]=np.arange(inputfile.variables[sys.argv[i]].size) | |
| 257 if (sys.argv[i+1]=="be"): #between_exclude | |
| 258 #Get the 2 thresholds from the arg which looks like "threshold1-threshold2" | |
| 259 threshold1=sys.argv[i+2].split("-")[0] | |
| 260 threshold2=sys.argv[i+2].split("-")[1] | |
| 261 my_dic[my_dic_index]=is_between_exclude(inputfile, sys.argv[i], float(threshold1), float(threshold2)) | |
| 262 if (sys.argv[i+1]=="bi"): #between_include | |
| 263 #Get the 2 thresholds from the arg which looks like "threshold1-threshold2" | |
| 264 threshold1=sys.argv[i+2].split("-")[0] | |
| 265 threshold2=sys.argv[i+2].split("-")[1] | |
| 266 my_dic[my_dic_index]=is_between_include(inputfile, sys.argv[i], float(threshold1), float(threshold2)) | |
| 267 | |
| 268 ##################### | |
| 269 ##################### | |
| 270 | |
| 271 | |
| 272 #If precise coord given. | |
| 273 if Coord_bool: | |
| 274 while noval: #While no closest coord with valid values is found | |
| 275 #Return closest coord avaible | |
| 276 tree=spatial.KDTree(all_coord) | |
| 277 closest_coord=(tree.query([(value_dim_lat,value_dim_lon)])) | |
| 278 cc_index=closest_coord[1] | |
| 279 | |
| 280 closest_lat=float(all_coord[closest_coord[1]][0][0]) | |
| 281 closest_lon=float(all_coord[closest_coord[1]][0][1]) | |
| 282 | |
| 283 #Get coord index into dictionary | |
| 284 my_dic_index="list_index_dim"+str(name_dim_lat) | |
| 285 my_dic[my_dic_index]=latitude.tolist().index(closest_lat) | |
| 286 | |
| 287 my_dic_index="list_index_dim"+str(name_dim_lon) | |
| 288 my_dic[my_dic_index]=longitude.tolist().index(closest_lon) | |
| 289 | |
| 290 | |
| 291 #All dictionary are saved in the string exec2 which will be exec(). Value got are in vec2 | |
| 292 exec2="vec2=inputfile.variables['"+var+"'][" | |
| 293 first=True | |
| 294 for i in dim_names: #Every dim are in the right order | |
| 295 if not first: | |
| 296 exec2=exec2+"," | |
| 297 dimension_indexes="my_dic[\"list_index_dim"+i+"\"]" #new dim, custom name dic | |
| 298 try: #If some error or no specific user choices; every indexes are used for the selected dim. | |
| 299 exec(dimension_indexes) | |
| 300 except: | |
| 301 dimension_indexes=":" | |
| 302 exec2=exec2+dimension_indexes #Concatenate dim | |
| 303 first=False #Not the first element now | |
| 304 exec2=exec2+"]" | |
| 305 #print exec2 #To check integrity of the string | |
| 306 exec(exec2) #Execution, value are in vec2. | |
| 307 #print vec2 #Get the value, standard output | |
| 308 | |
| 309 #Check integrity of vec2. We don't want NA values | |
| 310 i=0 | |
| 311 #Check every value, if at least one non NA is found vec2 and the current closest coords are validated | |
| 312 vecsize=vec2.size | |
| 313 #print (str(vecsize)) | |
| 314 if vecsize>1: | |
| 315 while i<vecsize: | |
| 316 #print (str(vec2)) | |
| 317 if vec2[i]!="nan": | |
| 318 break | |
| 319 else: | |
| 320 i=i+1 | |
| 321 else: | |
| 322 if vec2!="nan": | |
| 323 break | |
| 324 else: | |
| 325 i=i+1 | |
| 326 | |
| 327 if i<vecsize: #There is at least 1 nonNA value | |
| 328 noval=False | |
| 329 else: #If only NA : pop the closest coord and search in the second closest coord in the next loop. | |
| 330 all_coord=np.delete(all_coord,cc_index,0) | |
| 331 | |
| 332 | |
| 333 #Same as before, dictionary use in exec2. exec(exec2) give vec2 and the values wanted. | |
| 334 else: | |
| 335 exec2="vec2=inputfile.variables['"+str(sys.argv[3])+"'][" | |
| 336 first=True | |
| 337 for i in dim_names: #Respect order | |
| 338 if not first: | |
| 339 exec2=exec2+"," | |
| 340 dimension_indexes="my_dic[\"list_index_dim"+i+"\"]" | |
| 341 try: #Avoid error and exit | |
| 342 exec(dimension_indexes) | |
| 343 except: | |
| 344 dimension_indexes=":" | |
| 345 exec2=exec2+dimension_indexes | |
| 346 first=False | |
| 347 exec2=exec2+"]" | |
| 348 exec(exec2) | |
| 349 | |
| 350 | |
| 351 ######################## | |
| 352 ######################## | |
| 353 | |
| 354 | |
| 355 #This part create the header of every value. | |
| 356 #Values of every dim from the var is saved in a list : b[]. | |
| 357 #All the lists b are saved in the unique list a[] | |
| 358 #All the combinations of the dim values inside a[] are the headers of the vec2 values | |
| 359 | |
| 360 #Also write dim_name into a file to make clear header. | |
| 361 fo=open("header_names",'w') | |
| 362 | |
| 363 a=[] | |
| 364 for i in dim_names: | |
| 365 try: #If it doesn't work here its because my_dic= : so there is no size. Except will direcly take size of the dim. | |
| 366 size_dim=inputfile[i][my_dic['list_index_dim'+i]].size | |
| 367 except: | |
| 368 size_dim=inputfile[i].size | |
| 369 my_dic['list_index_dim'+i]=range(size_dim) | |
| 370 | |
| 371 #print (i,size_dim) #Standard msg | |
| 372 b=[] | |
| 373 #Check size is useful since b.append(inputfile[i][my_dic['list_index_dim'+i][0]]) won't work | |
| 374 if size_dim>1: | |
| 375 for s in range(0,size_dim): | |
| 376 b.append(inputfile[i][my_dic['list_index_dim'+i][s]]) | |
| 377 #print (i,inputfile[i][my_dic['list_index_dim'+i][s]]) | |
| 378 else: | |
| 379 b.append(inputfile[i][my_dic['list_index_dim'+i]]) | |
| 380 #print (i,inputfile[i][my_dic['list_index_dim'+i]]) | |
| 381 | |
| 382 a.append(b) | |
| 383 fo.write(i+"\t") | |
| 384 if Coord_bool: | |
| 385 fo.write("input_lat\t"+"input_lon\t") | |
| 386 fo.write(var+"\n") | |
| 387 fo.close() | |
| 388 | |
| 389 | |
| 390 ###################### | |
| 391 ###################### | |
| 392 | |
| 393 | |
| 394 #Write header in file | |
| 395 fo=open("header",'w') | |
| 396 for combination in itertools.product(*a): | |
| 397 if Coord_bool: | |
| 398 fo.write(str(combination)+"_"+str(value_dim_lat)+"_"+str(value_dim_lon)+"\t") | |
| 399 else: | |
| 400 fo.write(str(combination)+"\t") | |
| 401 fo.write("\n") | |
| 402 fo.close() | |
| 403 | |
| 404 | |
| 405 #Write vec2 in a tabular formated file | |
| 406 fo=open("sortie.tabular",'w') | |
| 407 #print(str(vec2)) | |
| 408 try: | |
| 409 vec2.tofile(fo,sep="\t",format="%s") | |
| 410 except: | |
| 411 vec3=np.ma.filled(vec2,np.nan) | |
| 412 vec3.tofile(fo,sep="\t",format="%s") | |
| 413 fo.close() | |
| 414 | |
| 415 | |
| 416 ###################### | |
| 417 ###################### | |
| 418 | |
| 419 | |
| 420 #Final sweet msg | |
| 421 print (var+" values successffuly extracted from "+sys.argv[1]+" !") |
