Mercurial > repos > mnhn65mo > netcdf_handler
comparison netcdf_read.py @ 0:8da8ec7da45f draft default tip
Uploaded
author | mnhn65mo |
---|---|
date | Thu, 02 Aug 2018 09:24:38 -0400 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:8da8ec7da45f |
---|---|
1 import netCDF4 | |
2 from netCDF4 import Dataset | |
3 import numpy as np | |
4 import matplotlib | |
5 matplotlib.use("Agg") | |
6 import matplotlib.pyplot as plt | |
7 from pylab import * | |
8 import sys | |
9 import os | |
10 from scipy import spatial | |
11 from math import radians, cos, sin, asin, sqrt | |
12 import itertools | |
13 | |
14 ##################### | |
15 ##################### | |
16 | |
17 def checklist(dim_list, dim_name, filtre, threshold): | |
18 if not dim_list: | |
19 error="Error "+str(dim_name)+" has no value "+str(filtre)+" "+str(threshold) | |
20 sys.exit(error) | |
21 | |
22 | |
23 #Return dist in km between two coord | |
24 #Thx to : https://stackoverflow.com/questions/4913349/haversine-formula-in-python-bearing-and-distance-between-two-gps-points | |
25 def haversine(lon1, lat1, lon2, lat2): | |
26 """ | |
27 Calculate the great circle distance between two points | |
28 on the earth (specified in decimal degrees) | |
29 """ | |
30 # convert decimal degrees to radians | |
31 lon1, lat1, lon2, lat2 = map(radians, [lon1, lat1, lon2, lat2]) | |
32 | |
33 # haversine formula | |
34 dlon = lon2 - lon1 | |
35 dlat = lat2 - lat1 | |
36 a = sin(dlat/2)**2 + cos(lat1) * cos(lat2) * sin(dlon/2)**2 | |
37 c = 2 * asin(sqrt(a)) | |
38 r = 6371 # Radius of earth in kilometers. Use 3956 for miles | |
39 return c * r | |
40 | |
41 | |
42 #Comparison functions, return a list of indexes for the user conditions | |
43 def is_strict_inf(filename, dim_name, threshold): | |
44 list_dim=[] | |
45 for i in range(0,filename.variables[dim_name].size): | |
46 if filename.variables[dim_name][i] < threshold: | |
47 list_dim.append(i) | |
48 checklist(list_dim,dim_name,"<",threshold) | |
49 return list_dim | |
50 | |
51 def is_equal_inf(filename, dim_name, threshold): | |
52 list_dim=[] | |
53 for i in range(0,filename.variables[dim_name].size): | |
54 if filename.variables[dim_name][i] <= threshold: | |
55 list_dim.append(i) | |
56 checklist(list_dim,dim_name,"<=",threshold) | |
57 return list_dim | |
58 | |
59 def is_equal_sup(filename, dim_name, threshold): | |
60 list_dim=[] | |
61 for i in range(0,filename.variables[dim_name].size): | |
62 if filename.variables[dim_name][i] >= threshold: | |
63 list_dim.append(i) | |
64 checklist(list_dim,dim_name,">=",threshold) | |
65 return list_dim | |
66 | |
67 def is_strict_sup(filename, dim_name, threshold): | |
68 list_dim=[] | |
69 for i in range(0,filename.variables[dim_name].size): | |
70 if filename.variables[dim_name][i] > threshold: | |
71 list_dim.append(i) | |
72 checklist(list_dim,dim_name,">",threshold) | |
73 return list_dim | |
74 | |
75 def find_nearest(array,value): | |
76 index = (np.abs(array-value)).argmin() | |
77 return index | |
78 | |
79 def is_equal(filename, dim_name, value): | |
80 try: | |
81 index=filename.variables[dim_name][:].tolist().index(value) | |
82 except: | |
83 index=find_nearest(filename.variables[dim_name][:],value) | |
84 return index | |
85 | |
86 def is_between_include(filename, dim_name, threshold1, threshold2): | |
87 list_dim=[] | |
88 for i in range(0,filename.variables[dim_name].size): | |
89 if filename.variables[dim_name][i] >= threshold1 and filename.variables[dim_name][i] <= threshold2: | |
90 list_dim.append(i) | |
91 checklist(list_dim,dim_name,">=",threshold1) | |
92 checklist(list_dim,dim_name,"=<",threshold2) | |
93 return list_dim | |
94 | |
95 def is_between_exclude(filename, dim_name, threshold1, threshold2): | |
96 list_dim=[] | |
97 for i in range(0,filename.variables[dim_name].size): | |
98 if filename.variables[dim_name][i] > threshold1 and filename.variables[dim_name][i] < threshold2: | |
99 list_dim.append(i) | |
100 checklist(list_dim,dim_name,">",threshold1) | |
101 checklist(list_dim,dim_name,"<",threshold2) | |
102 return list_dim | |
103 | |
104 ####################### | |
105 ####################### | |
106 | |
107 #Get args | |
108 #Get Input file | |
109 inputfile=Dataset(sys.argv[1]) | |
110 var_file_tab=sys.argv[2] | |
111 var=sys.argv[3] #Var chosen by user | |
112 | |
113 Coord_bool=False | |
114 | |
115 | |
116 ###################### | |
117 ###################### | |
118 #len_threshold=1000000 | |
119 len_threshold=7000 | |
120 x_percent=0.75 | |
121 threshold_latlon=100 | |
122 | |
123 | |
124 #Check if coord is passed as parameter | |
125 arg_n=len(sys.argv)-1 | |
126 if(((arg_n-3)%3)!=0): | |
127 Coord_bool=True #Useful to get closest coord | |
128 arg_n=arg_n-4 #Number of arg minus lat & lon | |
129 name_dim_lat=str(sys.argv[-4]) | |
130 name_dim_lon=str(sys.argv[-2]) | |
131 value_dim_lat=float(sys.argv[-3]) | |
132 value_dim_lon=float(sys.argv[-1]) | |
133 | |
134 #Get all lat & lon | |
135 #try: | |
136 if True: | |
137 latitude=np.ma.MaskedArray(inputfile.variables[name_dim_lat]) | |
138 longitude=np.ma.MaskedArray(inputfile.variables[name_dim_lon]) | |
139 lat=latitude;lon=longitude #Usefull to keep the originals lat/lon vect before potentially resize it bellow. | |
140 len_all_coord=len(lat)*len(lon) | |
141 | |
142 #print("len all coord "+str(len_all_coord)+" threshold "+str(len_threshold)) | |
143 | |
144 #To avoid case when all_coord is to big and need to much memory | |
145 #If the vector is too big, reduce it to its third in a loop until its < to the threshold | |
146 while len_all_coord > len_threshold: | |
147 | |
148 if len(lat)<threshold_latlon: #If lat and lon are very different and lon is >> than lat. This way only lon is reduce and not lat. | |
149 x_percent_len_lat=99999999 | |
150 else: | |
151 x_percent_len_lat=int(x_percent*len(lat)) | |
152 | |
153 if len(lon)<threshold_latlon: #If lat and lon are very different and lat is >> than lon. This way only lat is reduce and not lon. | |
154 x_percent_len_lon=99999999 | |
155 else: | |
156 x_percent_len_lon=int(x_percent*len(lon)) | |
157 | |
158 #print("len(lat) :"+str(len(lat))+" x_percent_len_lat "+str(x_percent_len_lat)) | |
159 #print("len(lon) :"+str(len(lon))+" x_percent_len_lon "+str(x_percent_len_lon)) | |
160 | |
161 | |
162 pos_lat_user=find_nearest(lat,value_dim_lat) | |
163 pos_lon_user=find_nearest(lon,value_dim_lon) | |
164 | |
165 | |
166 #This part is to avoid having a vector that start bellow 0 | |
167 lat_reduced=int(pos_lat_user-x_percent_len_lat/2-1) | |
168 if lat_reduced<0: | |
169 lat_reduced=0 | |
170 lon_reduced=int(pos_lon_user-x_percent_len_lon/2-1) | |
171 if lon_reduced<0: | |
172 lon_reduced=0 | |
173 #Opposite here to avoid having vector with len > to len(vector) | |
174 lat_extended=int(pos_lat_user+x_percent_len_lat/2-1) | |
175 if lat_extended>len(lat): | |
176 lat_extended=len(lat) | |
177 lon_extended=int(pos_lon_user+x_percent_len_lon/2-1) | |
178 if lon_extended>len(lon): | |
179 lon_extended=len(lon) | |
180 | |
181 lat=lat[lat_reduced:lat_extended] #add a test to check if pos_lat_user-x_percent_len_lat/2-1 >0 | |
182 lon=lon[lon_reduced:lon_extended] | |
183 #print("latreduced : "+str(lat_reduced)+" latextended "+str(lat_extended)) | |
184 #print("lonreduced : "+str(lon_reduced)+" lonextended "+str(lon_extended)) | |
185 #print("lat : "+str(lat)) | |
186 #print("lon : "+str(lon)) | |
187 len_all_coord=len(lat)*len(lon) | |
188 | |
189 #print ("len_all_coord : "+str(len_all_coord)+". len_lat : "+str(len(lat))+" .len_lon : "+str(len(lon))) | |
190 | |
191 else: | |
192 #except: | |
193 sys.exit("Latitude & Longitude not found") | |
194 | |
195 #Set all lat-lon pair avaible in list_coord | |
196 list_coord_dispo=[] | |
197 for i in lat: | |
198 for j in lon: | |
199 list_coord_dispo.append(i);list_coord_dispo.append(j) | |
200 | |
201 #Reshape | |
202 all_coord=np.reshape(list_coord_dispo,(lat.size*lon.size,2)) | |
203 #np.set_printoptions(threshold='nan')#to print full vec | |
204 #print(str(all_coord)) | |
205 noval=True | |
206 | |
207 | |
208 | |
209 ######################### | |
210 ######################### | |
211 | |
212 | |
213 #Get the file of variables and number of dims : var.tab | |
214 var_file=open(var_file_tab,"r") #read | |
215 lines=var_file.readlines() #line | |
216 dim_names=[] | |
217 for line in lines: #for every lines | |
218 words=line.split() | |
219 if (words[0]==var): #When line match user input var | |
220 varndim=int(words[1]) #Get number of dim for the var | |
221 for dim in range(2,varndim*2+2,2): #Get dim names | |
222 dim_names.append(words[dim]) | |
223 #print ("Chosen var : "+sys.argv[3]+". Number of dimensions : "+str(varndim)+". Dimensions : "+str(dim_names)) #Standard msg | |
224 | |
225 | |
226 ######################## | |
227 ######################## | |
228 | |
229 | |
230 #Use a dictionary to save every lists of indexes | |
231 my_dic={} ##d["string{0}".format(x)] | |
232 | |
233 for i in range(4,arg_n,3): | |
234 #print("\nDimension name : "+sys.argv[i]+" action : "+sys.argv[i+1]+" .Value : "+sys.argv[i+2]+"\n") #Standard msg | |
235 | |
236 #Check if the dim selected for filtering is present in the var dimensions. | |
237 if (sys.argv[i] not in dim_names): | |
238 print("Warning ! "+sys.argv[i]+" is not a dimension of "+var+".\nThis filter will be skipped\nCheck in the file \"variables\" the dimensions available.\n\n") | |
239 pass | |
240 | |
241 my_dic["string{0}".format(i)]="list_index_dim" | |
242 my_dic_index="list_index_dim"+str(sys.argv[i]) #Possible improvement: Check if lon/lat are not parsed again | |
243 | |
244 #Apply every user filter. Call function and return list of index wich validate condition for every dim. | |
245 if (sys.argv[i+1]=="l"): #< | |
246 my_dic[my_dic_index]=is_strict_inf(inputfile, sys.argv[i], float(sys.argv[i+2])) | |
247 if (sys.argv[i+1]=="le"): #<= | |
248 my_dic[my_dic_index]=is_equal_inf(inputfile, sys.argv[i], float(sys.argv[i+2])) | |
249 if (sys.argv[i+1]=="g"): #> | |
250 my_dic[my_dic_index]=is_strict_sup(inputfile, sys.argv[i], float(sys.argv[i+2])) | |
251 if (sys.argv[i+1]=="ge"): #>= | |
252 my_dic[my_dic_index]=is_equal_sup(inputfile, sys.argv[i], float(sys.argv[i+2])) | |
253 if (sys.argv[i+1]=="e"): #== | |
254 my_dic[my_dic_index]=is_equal(inputfile, sys.argv[i], float(sys.argv[i+2])) | |
255 if (sys.argv[i+1]==":"): #all | |
256 my_dic[my_dic_index]=np.arange(inputfile.variables[sys.argv[i]].size) | |
257 if (sys.argv[i+1]=="be"): #between_exclude | |
258 #Get the 2 thresholds from the arg which looks like "threshold1-threshold2" | |
259 threshold1=sys.argv[i+2].split("-")[0] | |
260 threshold2=sys.argv[i+2].split("-")[1] | |
261 my_dic[my_dic_index]=is_between_exclude(inputfile, sys.argv[i], float(threshold1), float(threshold2)) | |
262 if (sys.argv[i+1]=="bi"): #between_include | |
263 #Get the 2 thresholds from the arg which looks like "threshold1-threshold2" | |
264 threshold1=sys.argv[i+2].split("-")[0] | |
265 threshold2=sys.argv[i+2].split("-")[1] | |
266 my_dic[my_dic_index]=is_between_include(inputfile, sys.argv[i], float(threshold1), float(threshold2)) | |
267 | |
268 ##################### | |
269 ##################### | |
270 | |
271 | |
272 #If precise coord given. | |
273 if Coord_bool: | |
274 while noval: #While no closest coord with valid values is found | |
275 #Return closest coord avaible | |
276 tree=spatial.KDTree(all_coord) | |
277 closest_coord=(tree.query([(value_dim_lat,value_dim_lon)])) | |
278 cc_index=closest_coord[1] | |
279 | |
280 closest_lat=float(all_coord[closest_coord[1]][0][0]) | |
281 closest_lon=float(all_coord[closest_coord[1]][0][1]) | |
282 | |
283 #Get coord index into dictionary | |
284 my_dic_index="list_index_dim"+str(name_dim_lat) | |
285 my_dic[my_dic_index]=latitude.tolist().index(closest_lat) | |
286 | |
287 my_dic_index="list_index_dim"+str(name_dim_lon) | |
288 my_dic[my_dic_index]=longitude.tolist().index(closest_lon) | |
289 | |
290 | |
291 #All dictionary are saved in the string exec2 which will be exec(). Value got are in vec2 | |
292 exec2="vec2=inputfile.variables['"+var+"'][" | |
293 first=True | |
294 for i in dim_names: #Every dim are in the right order | |
295 if not first: | |
296 exec2=exec2+"," | |
297 dimension_indexes="my_dic[\"list_index_dim"+i+"\"]" #new dim, custom name dic | |
298 try: #If some error or no specific user choices; every indexes are used for the selected dim. | |
299 exec(dimension_indexes) | |
300 except: | |
301 dimension_indexes=":" | |
302 exec2=exec2+dimension_indexes #Concatenate dim | |
303 first=False #Not the first element now | |
304 exec2=exec2+"]" | |
305 #print exec2 #To check integrity of the string | |
306 exec(exec2) #Execution, value are in vec2. | |
307 #print vec2 #Get the value, standard output | |
308 | |
309 #Check integrity of vec2. We don't want NA values | |
310 i=0 | |
311 #Check every value, if at least one non NA is found vec2 and the current closest coords are validated | |
312 vecsize=vec2.size | |
313 #print (str(vecsize)) | |
314 if vecsize>1: | |
315 while i<vecsize: | |
316 #print (str(vec2)) | |
317 if vec2[i]!="nan": | |
318 break | |
319 else: | |
320 i=i+1 | |
321 else: | |
322 if vec2!="nan": | |
323 break | |
324 else: | |
325 i=i+1 | |
326 | |
327 if i<vecsize: #There is at least 1 nonNA value | |
328 noval=False | |
329 else: #If only NA : pop the closest coord and search in the second closest coord in the next loop. | |
330 all_coord=np.delete(all_coord,cc_index,0) | |
331 | |
332 | |
333 #Same as before, dictionary use in exec2. exec(exec2) give vec2 and the values wanted. | |
334 else: | |
335 exec2="vec2=inputfile.variables['"+str(sys.argv[3])+"'][" | |
336 first=True | |
337 for i in dim_names: #Respect order | |
338 if not first: | |
339 exec2=exec2+"," | |
340 dimension_indexes="my_dic[\"list_index_dim"+i+"\"]" | |
341 try: #Avoid error and exit | |
342 exec(dimension_indexes) | |
343 except: | |
344 dimension_indexes=":" | |
345 exec2=exec2+dimension_indexes | |
346 first=False | |
347 exec2=exec2+"]" | |
348 exec(exec2) | |
349 | |
350 | |
351 ######################## | |
352 ######################## | |
353 | |
354 | |
355 #This part create the header of every value. | |
356 #Values of every dim from the var is saved in a list : b[]. | |
357 #All the lists b are saved in the unique list a[] | |
358 #All the combinations of the dim values inside a[] are the headers of the vec2 values | |
359 | |
360 #Also write dim_name into a file to make clear header. | |
361 fo=open("header_names",'w') | |
362 | |
363 a=[] | |
364 for i in dim_names: | |
365 try: #If it doesn't work here its because my_dic= : so there is no size. Except will direcly take size of the dim. | |
366 size_dim=inputfile[i][my_dic['list_index_dim'+i]].size | |
367 except: | |
368 size_dim=inputfile[i].size | |
369 my_dic['list_index_dim'+i]=range(size_dim) | |
370 | |
371 #print (i,size_dim) #Standard msg | |
372 b=[] | |
373 #Check size is useful since b.append(inputfile[i][my_dic['list_index_dim'+i][0]]) won't work | |
374 if size_dim>1: | |
375 for s in range(0,size_dim): | |
376 b.append(inputfile[i][my_dic['list_index_dim'+i][s]]) | |
377 #print (i,inputfile[i][my_dic['list_index_dim'+i][s]]) | |
378 else: | |
379 b.append(inputfile[i][my_dic['list_index_dim'+i]]) | |
380 #print (i,inputfile[i][my_dic['list_index_dim'+i]]) | |
381 | |
382 a.append(b) | |
383 fo.write(i+"\t") | |
384 if Coord_bool: | |
385 fo.write("input_lat\t"+"input_lon\t") | |
386 fo.write(var+"\n") | |
387 fo.close() | |
388 | |
389 | |
390 ###################### | |
391 ###################### | |
392 | |
393 | |
394 #Write header in file | |
395 fo=open("header",'w') | |
396 for combination in itertools.product(*a): | |
397 if Coord_bool: | |
398 fo.write(str(combination)+"_"+str(value_dim_lat)+"_"+str(value_dim_lon)+"\t") | |
399 else: | |
400 fo.write(str(combination)+"\t") | |
401 fo.write("\n") | |
402 fo.close() | |
403 | |
404 | |
405 #Write vec2 in a tabular formated file | |
406 fo=open("sortie.tabular",'w') | |
407 #print(str(vec2)) | |
408 try: | |
409 vec2.tofile(fo,sep="\t",format="%s") | |
410 except: | |
411 vec3=np.ma.filled(vec2,np.nan) | |
412 vec3.tofile(fo,sep="\t",format="%s") | |
413 fo.close() | |
414 | |
415 | |
416 ###################### | |
417 ###################### | |
418 | |
419 | |
420 #Final sweet msg | |
421 print (var+" values successffuly extracted from "+sys.argv[1]+" !") |