Mercurial > repos > yhoogstrate > edger_with_design_matrix
view edgeR_Convert_DGE_Table_to_Bedgraph.xml @ 8:31a23ae7c61e draft default tip
planemo upload for repository https://github.com/ErasmusMC-Bioinformatics/galaxytools-emc/tree/master/tools/edger_with_design_matrix commit eb5cd7834861d8ddbffce974ed0ca6f1c0ecccf2
author | erasmus-medical-center |
---|---|
date | Tue, 14 Feb 2017 10:01:51 -0500 |
parents | ec951a5017f8 |
children |
line wrap: on
line source
<?xml version="1.0" encoding="UTF-8"?> <tool id="edger_dge_table_to_bedgraph" name="edgeR: Convert 'differentially expressed genes'-table to bedgraph(s)" version="1.0.0.c"> <description>EdgeR's "differentially expressed genes" table to bedgraph(s)</description> <macros> <import>edgeR_macros.xml</import> </macros> <requirements> <requirement type="package" version="2.7">python</requirement> </requirements> <command> python '${__tool_directory__}/bin/edger_dge_table_to_bedgraph' -t $cpm_table -g $geneset #if $logfc: -c3 $logfc #end if #if $logcpm: -c4 $logcpm #end if #if $lr: -c5 $lr #end if #if $pvalue: -c6 $pvalue #end if #if $fdr: -c7 $fdr #end if </command> <inputs> <param format="tabular" name="cpm_table" type="data" label="'differentially expressed genes'-table as result from EdgeR" help="must have 7 columns of which the 2nd are gene names matching the GTF file" /> <param format="gtf,gff,gff3" name="geneset" type="data" label="Geneset used for estimating expression levels prior to expression analysis" /> <param name="columns" type="select" label="Desired columns" multiple="true" display="checkboxes"> <option value="c3" selected="true">logFC</option> <option value="c4">logCPM</option> <option value="c5">LR</option> <option value="c6">PValue</option> <option value="c7" selected="true">FDR</option> </param> </inputs> <outputs> <data format="bedgraph" name="logfc" label="logFC from ${cpm_table.name}"> <filter>"c3" in columns</filter> </data> <data format="bedgraph" name="logcpm" label="logCPM from ${cpm_table.name}"> <filter>"c4" in columns</filter> </data> <data format="bedgraph" name="lr" label="LR from ${cpm_table.name}"> <filter>"c5" in columns</filter> </data> <data format="bedgraph" name="pvalue" label="PValue from ${cpm_table.name}"> <filter>"c6" in columns</filter> </data> <data format="bedgraph" name="fdr" label="FDR from ${cpm_table.name}"> <filter>"c7" in columns</filter> </data> </outputs> <tests> <test> <param name="cpm_table" value="Convert_DGE_Table_to_Bedgraph/table_01.tabular.txt" /> <param name="geneset" value="Convert_DGE_Table_to_Bedgraph/genes_01.gtf" /> <param name="columns" value="c3,c7" /> <output name="logfc" file="Convert_DGE_Table_to_Bedgraph/logFC.output.bedgraph" /> <output name="fdr" file="Convert_DGE_Table_to_Bedgraph/FDR.output.bedgraph" /> </test> </tests> <help> P-values and FDRs are swapped from 1 to 0, and 0 to 1, because this way the most siginificant genes will obtain the highest values which is convenient for visualisation. @CONTACT@ </help> <expand macro="citations" /> </tool>